3 research outputs found

    Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance

    Get PDF
    In real computational world, scheduling is a decision making process. This is nothing but a systematic schedule through which a large numbers of tasks are assigned to the processors. Due to the resource limitation, creation of such schedule is a real challenge. This creates the interest of developing a qualitative scheduler for the processors. These processors are either single or parallel. One of the criteria for improving the efficiency of scheduler is waiting time variance (WTV). Minimizing the WTV of a task is a NP-hard problem. Achieving the quality of service (QoS) in a single or parallel processor by minimizing the WTV is a problem of task scheduling. To enhance the performance of a single or parallel processor, it is required to develop a stable and none overlap scheduler by minimizing WTV. An automated scheduler\u27s performance is always measured by the attributes of QoS. One of the attributes of QoS is ‘Timeliness’. First, this chapter presents the importance of heuristics with five heuristic-based solutions. Then applies these heuristics on 1‖WTV minimization problem and three heuristics with a unique task distribution mechanism on Qm|prec|WTV minimization problem. The experimental result shows the performance of heuristic in the form of graph for consonant problems

    Posture prediction and optimization for a manual assembly operation involving lifting of weights

    No full text
    The present work combines ergonomics with the posture prediction in the assembly process to avoid musculoskeletal issues of human operator. For improved productivity the operator should be in a better work environment and in sound health. The purpose of this paper is to provide a different perspective to avoid ergonomic risk factors in manual assembly. Here, a human is modeled as 20-DOF as modeled in robotic analysis and simulated in a virtual environment. In the present study, two objective cost functions i.e. joint discomfort function and energy expenditure function have been employed for evaluating the optimized posture. For posture prediction, a combined multi-objective optimization (MOO) method is used and the objective cost functions are minimized i.e. less joint discomfort and less energy in MOO method required to do the manual assembly operation and consequently, the results are compared and finally the movements are tested using REBA technique
    corecore